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Abstract

We solve the problem of determining airfoils that approximate, in a least square

sense, given surface pressure distributions in transonic 
ight regimes. The 
ow is

modeled by means of the Euler equations and the solution procedure is an adjoint-

based minimization algorithm that makes use of the inverse Theodorsen transform in

order to parameterize the airfoil. Fast convergence to the optimal solution is obtained

by means of the pseudo-time method. Results are obtained using three di�erent pres-

sure distributions for several free stream conditions. The airfoils obtained have given

a trailing edge angle.
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1 Introduction

State of the art computational techniques allow the analysis of complex two-dimensional

or three-dimensional con�gurations of aerodynamic interest, using models of increasing

complexity. In the design of aerodynamic components however, simpler physical models

have been used, in order to obtain analytical solutions or tractable computational problems.

In some cases, the use of simpler models does not impair the validity of the results obtained.

For example, transonic shock-free airfoils were designed using the full potential equation

written on the hodograph plane: since shock-free solutions were sought, it was not necessary

to use the Euler equations.

This simpli�cation is generally not valid when shocks, even weak shocks, are present in

the 
ow �eld. In fact, although entropy production by weak shocks could be small, at shock

points of high curvature, entropy gradients could be high as pointed out by Nieuwland &

Spee [18]. Another reason to avoid the potential approximation in the presence of shocks

is the possibility of multiple solutions as shown by Steinho� & Jameson [24]. Therefore,

since shock-free solutions are at least unlikely when designing airfoils in the presence of

constraints of various kinds, the use of the Euler equations becomes necessary.

Much e�ort in transonic aerodynamics has been devoted to the design of shock-free air-

foils, even though according to an early theoretical result due to Morawetz [16], shock-free

solutions of the full potential equations are isolated points. However, subsequent experi-

mental investigation conducted by Pearcy [20], and by Nieuwland & Spee [17] showed that

shock-free 
ows around airfoils with no or weak shocks can be experimentally realized and
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are stable with respect to unsteady disturbances or variations of M1. The design methods

employed at that time were based on the transformation of a known solution in the hodo-

graph plane to the physical plane, and iterating on the input hodograph solution based on

to the result obtained in the physical plane. For a review of these methods see the article by

Boerstoel [4]. A common drawback of these approaches is that they have very little control

on the resulting pressure distribution over the airfoil. Volpe [27] tried to overcome this

problem by taking pressure distribution as an input design requirement. However, for the

well posedness of the problem, special restrictions had to be applied on the possible choices.

In addition, the 
ows obtained with such airfoils showed secondary shocks embedded in the


ow �eld, that caused losses even at design conditions and boundary layer separation at

o�-design conditions, as pointed out by Labruj�ere & Sloo� [15].

More recently, advances in design methodology have come about through shape optimiz-

ation. Shape optimization is based on the minimization of an objective function, de�ned

on the boundary, with respect to the variation of the boundary itself. This approach allows

for example multi-point design and the easy introduction of design constraints, in addition

to control of the pressure distribution on the body. The �rst attempts of Pironneau [21][22]

and of Glowinski & Pironneau[7] to solve such problems, were based on control theory.

With this approach the minimum of the functional is determined with a descent algorithm

based on the gradient of the functional with respect to the controls. The gradient of the

functional is determined solving the adjoint of the equations governing the 
ow. No much

progress was made at the time because no code for the computation of the 
ow �eld and of
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the adjoint equations was available. Recently this method was reintroduced by Jameson [13]

and computationally demonstrated its inherent vantages. In fact, with other minimization

strategies for wing design, such as that �rst proposed by Hicks & Henne [9], the gradient of

the functional is computed by �nite di�erences, perturbing the controls one by one. This

requires a complete 
ow-�eld solution for each gradient component to be computed. Even

though optimal designs have been obtained with this method for the potential equations,

see Reuther, van Dam & Hicks [23], the method becomes too computationally expensive

for the Euler and Navier-Stokes equations. In contrast, with the method �rst proposed by

Pironneau [21], it is necessary to compute the 
ow �eld only once for each gradient eval-

uation. This has led to several applications for both internal and external 
ows governed

by Euler equations - see Beux & Dervieux [2], Jameson & Reuther [14], Iollo & Salas [11]

- for Navier-Stokes equations, see Cabuk & Modi [5]. In the latter work, however, the cost

of computations was so high that they could only a�ord to compute about 10 
ow-�eld

solutions on a relatively coarse grid.

A further decrease in the computational e�ort is possible by applying the theory proposed

by Ta'asan [25], namely the pseudo-time method, which is based on the following observa-

tion. Gradient-based methods (including adjoint formulations) can be viewed as marching

along the intersection of the hypersurfaces representing the solutions of the 
ow-�eld and

of the adjoint equations. This is an expensive process since each step requires the solution

of two systems of PDEs. The idea of the pseudo-time method is to perform the march-

ing while satisfying the optimality conditions on the boundary, but without satisfying the
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ow-�eld and adjoint equations in the interior domain. The cost of such an iteration per

step is signi�cantly smaller than that of gradient-based methods. Its convergence has been

shown by Ta'asan to be independent of the number of design variables. This method was

applied by Iollo, Kuruvila & Ta'asan [10] to a few model problems governed by the Euler

equations, which require the solution of the optimization problem in a small vicinity of the

boundary. The results were compatible with the theoretical predictions.

In the present paper we use the above method for transonic airfoil design. In particular we

are concerned with the problem of �nding families of wing sections that have approximately

the same pressure distribution at di�erent 
ight conditions. An example of such airfoils

was given by Chin [6]. In this paper we show a few families corresponding to di�erent

pressure distributions, with prescribed trailing edge angle. Such families are designed by

means of the inverse Theodorsen transform, that allows the optimization with an increasing

number of harmonics de�ning the airfoil geometry. Compared to previous work, we are able

to design for given pressure distribution using the Euler equations, even in the presence of


ows with sharply captured shocks. The total computational cost to reach an optimum is of

the order of the cost of a few 
ow-�eld analyses, allowing a cheap mapping of performance

with several target pressure distributions.

2 Statement of the Problem

Consider a plane transonic 
ow around an airfoil as in �g. 1. Let the upstreamMach number

be M1 and take the unperturbed stream pressure and density as reference. Disregarding
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Figure 1: Physical plane. The portion of the plane included in �, and external to � is

denoted by 
.

viscous e�ects, the 
ow is governed by the Euler equations written in the following form

Ut + Fx +Gy = 0 (1)

where

U =

2
66666666666664

�

�u

�v

�e

3
77777777777775

F =

2
66666666666664

�u

p+ �u2

�uv

u(�e+ p)

3
77777777777775
G =

2
66666666666664

�v

�uv

p+ �v2

v(�e+ p)

3
77777777777775

Here u, v, �, e and p are the velocity components, density, speci�c total energy and pressure

respectively. Assuming a perfect gas law, we also have p = ��(2e � u2 � v2) with � =

(
 � 1)=2 and 
 the ratio of speci�c heats. The Euler equations de�ne the state of the
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Figure 2: a)z plane; b)w plane; c)w00 plane.

system, and therefore are named state equations.

We assume M1 < 1 and that the external boundary � is far enough so that the 
ow is

unperturbed there. If the 
ow is incoming with respect to the normal to �, total pressure,

entropy and the ratio v=u are assigned, whereas if the 
ow is outgoing static pressure is

prescribed. The boundary condition on the airfoil is �V � n = 0, where n is the normal to

� oriented as in �g. 1 and V = (u; v).

Consider a real valued functional E(�;X(�)) where X(�) is a solution of the Euler equa-

tions with boundary conditions. The optimization problem consists of minimizing the func-

tional E over all the admissible shapes of the boundary �.

The functional E is chosen according to some design criteria. Although the formulation

we propose is general, here we will limit ourself to the case in which

E(�) =
1

2

I
�

[p(�) � p�]2 ds (2)

where p� is a given pressure distribution and s is the curvilinear coordinate on �. The

solution of such problem will allow the design of minimum-wave-drag pro�les in transonic
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Figure 3: Computational mesh.


ows. Constraints on aerodynamic characteristics of the airfoil such as pitching moment or

lift coe�cient can be added to E in the form of quadratic penalty functions.

3 Analysis

In this section we will derive the necessary conditions for the minimum of E(�) subject to

the Euler equations. The derivation is similar to that presented for internal 
ows by Iollo

& Salas [11]. Consider the augmented functional

L(U;�;�; �) = E +
Z



t�(AUx +BUy)d
 +
Z
�

��V � nds (3)

where A = @F=@U and B = @G=@U . The vector �(x; y) = t(�1; �2; �3; �4) and the scalar

�(s) are the continuous equivalents of the Lagrange multipliers. We will show that the
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unconstrained minimum of eq. 3 with respect to U;�;� and � is the same as that of E(�).

Suppose each point of the airfoil can be displaced a length "~n(s) in the direction of the

normal n to the pro�le in a way that will be described in the next section. Corresponding

to this change, U(x; y) is increased by a function " eU(x; y); �(x; y) by "e�(x; y) and �(s) by
"~�(s). Calculating the variation of the functional L with respect to the variation of U , �,

� and � respectively, and disregarding higher order terms we obtain

�LU =
I
�

@p

@U
(p(�) � p�) eUds + Z

�

t�(Anx +Bny) eUds +
�

Z



(t�xA+ t�yB) eUd
 +
Z
�

�n �
@�V

@U
eUds (4)

where

@p

@U
= 2k

 
u2 + v2

2
;�u;�v; 1

!
and

@�V

@U
=

0
BBB@

0 1 0 0

0 0 1 0

1
CCCA

and

�L� =
Z



t e�(AUx +BUy)d
 (5)

�L� =
I
�

~��V � nds (6)

�L� =
I
�

@p

@n
(p(�) � p�) ~n ds+

Z
�

t� (AUx +BUy) ~n ds+

+
Z
�

�
@(�V)

@n
� n ~n ds�

Z
�

��V � ~n ds (7)

where ~n is the variation of the normal to the airfoil boundary �.

At the minimum of the functional, for all the possible choices of the functions eU; e�; ~� and

~n; the following must be true

�LU = �L� = �L� = �L� = 0 (8)
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Therefore, we have

�L� = 0 , AUx +BUy = 0 on 


and

�L� = 0 , �V � n = 0 on �

which are the Euler equations and boundary conditions. Furthermore we obtain the follow-

ing adjoint or costate equations

�LU = 0 ,
tA�x +

tB�y = 0 on 
 (9)

On the airfoil, eqs. 9 become

@p

@U
(p(�) � p�) + t�(Anx +Bny) + �n

@�V

@U
= 0 (10)

where

� = �

h
�1 + u�2 + v�3 + (
e� kV 2)�4

i
(11)

From eq. 10 the boundary condition for � on � are found. Given U; the set of costate

eqs.(9-11) determine � in 
 and � on � uniquely.

It is seen that if we could solve for ~n from the system of eqs. 8, then we would also

determine the minimum of E. Unfortunately, eqs. 8 cannot be easily solved for ~n. Nev-

ertheless, using an optimization algorithm it will be possible to determine the shape of �

that minimizes L and E. In fact, knowing U and � for a given shape of the airfoil, we can

calculate from eq.(7) how to choose ~n so that �L < 0, and iterate until the minimum is

reached. Two algorithms of this kind will be discussed in Section 5.
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In case of shocks occuring in the 
ow �eld, we split the domain of integration by means

of a curve � that coincides with the shocks where they exist. Then we follow the same

derivation presented so far on each of the sub-domains, regarding � as a boundary; the

situation is similar to that which occurs for internal two-dimensional 
ows. The resulting

extra condition for � on the shock is � = 0. It should be noted that if the shocks are not

treated properly, the problem of solving the costate equations with boundary conditions is

not well-posed, as shown by Iollo, Salas & Ta'asan [12].

4 Airfoil Design by Inverse Theodorsen Transform

By means of a conformal mapping, it is possible to transform a large class of shapes of

aerodynamic interest to the unit circle. In particular, using the Theodorsen transform it is

possible to transform any given pro�le to the unit circle. As an example, we will transform

the NACA 0012 pro�le of �g. 2a. First the pro�le is represented in the complex plane z,

with the trailing edge corresponding to the point (1; 0). Then the plane z is transformed

into the plane w (�g. 2b) using the relation

w =
z � 1

z + 1
(12)

The angle in the origin is eliminated by the transformation

w0 = w� (13)

where

� =
�

2� � �
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where � is the angle at the trailing edge. Finally, the plane w0 is transformed into the

quasi-circle of �g. 2c by

w00 =
1� w0

w0 + 1
(14)

If we denote by � the unit circle plane, the transform is completed by

w00 = � e
P

N

n=0
(an+i bn) �

�n

(15)

where the coe�cients an and bn are usually determined by means of the Fast Fourier Trans-

form.

In the design of an airfoil, we proceed in the opposite way. Starting from the unit circle

plane, the coe�cients an and bn are given so that an airfoil is obtained on the z plane. Let

us de�ne � = r ei' and w00 = � ei �. In order to design an airfoil with a given trailing edge

angle, it is necessary that the �gure resulting on the plane w00 passes through the point

(1,0). In addition it is convenient that for ' = 0 we have � = 0. It is easily seen that for

' = 0, the radius r is not a�ected by the value of b0, while � =
P
N

n=0
bn. Hence, taking

b0 = �
P
N

n=1
bn, we have ' = 0 for � = 0. Finally, since the value of � is not a�ected by

the coe�cient a0, we can take a0 = �
P
N

n=1
an in order to have � = 1 for ' = 0.

The coe�cients must be evaluated accurately to obtain reasonable shapes in the z plane.

For example, in the case of non lifting pro�les bn = 0 for every n. On the other hand, the

summation
P
N

n=0
n bn controls the camber, as can be seen studying the transform in the

vicinity of ' = 0.

Given a set of coe�cients an and bn we are now interested in calculating the variation of

the tangent and of the normal when we increment one of the coe�cients by a small quantity,
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say �ai. Given two points z and z0 on the airfoil, the tangent to the pro�le is de�ned by

lim
z0!z

z0 � z

jz0 � zj
(16)

Let us consider the corresponding points on the unit circle, respectively �0 and �, we have

lim
�0!�

�0 � �

j�0 � �j
= ei ('+�=2) (17)

Therefore we obtain

lim
z0!z

z0 � z

jz0 � zj
=

�����dHd�
����� ei ('+�=2) (18)

where H is the transformation from � to z. For example, the variation of the normal with

respect to ai is given by

~n = ei '
@

@ai

 �����dHd�
�����
!
�ai (19)

Often airfoils are subject to geometric constraints such as �xed volume, maximum or min-

imum thickness, or given trailing edge angle. These constraints can be easily included in

the mapping formulation. For example, if � is kept constant, then the trailing edge angle

is constant.

On the other hand, the volume included by an airfoil is

V = <

�I
�zdz

�
(20)

and hence it is possible to compute the variation of the volume with respect to the coe�cients

of the transformation. Therefore, when the volume is kept �xed, the equation

NX
n=0

@V

@an
�an +

NX
n=0

@V

@bn
�bn = 0 (21)
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represents the additional constraint in the minimization. In particular, we can take for

example

�ai = �

P
N

n=0;n 6=i (@V =@an) �an +
P
N

n=0
(@V =@bn) �bn

@V =@ai
(22)

and substitute �ai in the expression for the descent direction, in order to obtain a constrained

minimization.

Taking the coe�cients an and bn to be the controls, we were able to perform a minim-

ization with an increasing number of controls involved. In fact, in the �rst optimization

iteration, the rough shape of the airfoil must be de�ned, therefore it is needless to work

with many Fourier coe�cients at this point. As the rate of convergence to the minimum de-

creases, higher harmonics are added until the convergence rate increases and the functional

is minimized.

5 Numerical Solution

In this section we will discuss the numerical solution of the 
ow-�eld equations and of the

adjoint equations. In addition, two solution strategies for the minimization problem of

Section 2 will be presented.

The Euler equations are solved by means of an explicit, �nite-volume scheme based on the


ux-di�erence formulation proposed by Pandol� [19], and the steady solution is obtained as

an asymptotic limit of a time evolution. The conservative variables U are computed at the

cell centers, and the 
uxes F and G are evaluated at the cell interfaces with an approximate

Riemann solver. Second-order accuracy is achieved using a method in the spirit of the
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Figure 4: Iso-Mach lines for a NACA 0012 at 1 degree of incidence and M1 = 0:85.

CL = 0:334, CD = 0:0568.

essentially non-oscillatory scheme of Harten, Engquist & Chakravarthy [8]. With such

an approach the 
ow-�eld values at the cell interfaces, used as initial conditions for the

Riemann problem, are reconstructed by means of a linear interpolation. The occurrence of

spurious oscillations is prevented using a minmod limiter. The amplitude of the integration

step is chosen in accordance with the Courant-Friedrichs-Lewy (CFL) condition.

Compared to other solvers, this one allows a sharper capturing of shocks and contact

discontinuities, so that wave-drag computations are more reliable. It should be emphasized

that in other works, such that of Jameson & Reuther [14], no special treatment of the

costate equations is made at the shock. This is allowed in their formulation because shocks

are smeared over several grid points due to arti�cial viscosity. However, because of the
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M=0.7. Korn Airfoil.
M=0.75. Optimal design.

Figure 5: Pressure versus chord fraction for Korn airfoil and optimal airfoil at M1 = 0:75.

The unperturbed 
ow static pressure is taken as reference.

smearing of the shock, the computed gradient might not be reliable close to the minimum,

causing a drastic reduction of the convergence rate.

The costate equations have no conservative form, and the numerical solution is obtained

with a �nite-di�erence scheme. We introduce a set of curvilinear coordinates '(x; y) and

 (x; y): The costate equations are then rewritten as follows

t
A�' +

t
B� = 0 (23)

where A = A'x + B'y and B = A x + B y: The transformations ' and  are de�ned

as (xl; ym)
'

! l and (xl; ym)
 

! m, where l and m are the indices that characterize each

grid point. The above equations are linear and as such are their boundary conditions, see

Iollo & Salas [11]. Suppose that locally we separate the variables through the following

approximation:

�('; ; t) = �
0

('; t) + �
00

( ; t) (24)
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Figure 6: Pressure versus chord fraction for Korn airfoil and optimal airfoil at M1 = 0:8.

The unperturbed 
ow static pressure is taken as reference.

We are left with two one-dimensional subproblems that are solved as the asymptotic limit

of a time-dependent technique, as explained by Iollo & Salas [11].

The computational grid is the same for Euler and adjoint equations and is obtained by

means of the transformation that we use to generate the pro�le. All the computations have

been performed on an O-grid with 120 tangential and 30 radial points, as partially shown

in �g. 3. The outer boundary is at 10 chords from the airfoil.

In Section 3 we have introduced the basic idea for the minimization of the functional L.

From eq. 7 and eq. 19, once the solution of Euler and adjoint equations is computed for the

present geometry, it is possible to calculate the gradient of L with respect to the coe�cients

an and bn. In particular, disregarding higher order terms, we have

�L =
NX
n=1

"
@L

@an
�an +

@L

@bn
�bn

#
(25)
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Figure 7: Korn airfoil and optimal designs at M1 = 0:75 and M1 = 0:8.

and taking

�an = �� @L=@an (26)

and

�bn = �� @L=@bn (27)

it is �L < 0 if � is small enough. A �rst minimization algorithm is therefore:

1. start with a set of an and bn;

2. enforce �L� = 0 and �L� = 0 by �nding a U that satis�es the steady state Euler

equations and boundary conditions;

3. enforce �LU = 0 by �nding a � that satis�es the costate equations and boundary

conditions;
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Figure 8: Pressure distribution over a Korn airfoil at M1 = 0:8.

4. calculate @L=@an and @L=@bn for n = 1 : : : N . If these partial derivatives are all

0 we have found the minimum, otherwise

5. update an and bn for n = 1 : : : N with �an and �bn as in eqs. 26 and 27;

6. restart from 2.

This algorithm is known as steepest descent. In other approaches, like in the quasi-Newton

methods, the local curvature of the functional is taken into account in order to compute an

optimal descent step � and increase the convergence rate to the minimum.

The adjoint-equations approach reduces the cost of computing the gradient; the cost is the

same regardless of the number of controls. However, the number of 
ow-�eld evaluations to

reach the minimum is very high, and grows more than linearly when the number of controls

are increased, as shown by Beux & Dervieux [3]. Considering 
ows governed by the Navier-

Stokes equations, as done by Cabuk & Modi [5], it is seen that only a few minimization

steps with a relatively coarse grid are possible, due to the excessive computational times
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required.

Ta'asan [25] proposed the pseudo-time method as a more e�cient way of solving the op-

timization problem. The main observation is the following. The solution of the optimization

problem lies on the intersection of the hypersurfaces where the state, costate and optimality

conditions are satis�ed. Gradient based methods (including adjoint formulations) can be

viewed as marching along the intersection of the state and costate hypersurfaces. This is

an expensive process since at each step taken along the intersection requires the solution

of two systems of PDEs. The idea of the pseudo-time method is to perform the marching

on the optimality conditions hypersurface while relaxing the requirement to lie on the state

and costate hypersurfaces. Note that the hypersurface representing the optimality condi-

tions is one dimension less that of the state and costate equations. Therefore, the cost of

such an iteration per step is signi�cantly smaller than that of gradient based methods. Its

convergence has been shown by Ta'asan [25] to be independent of the number of design

variables.

In some cases the optimality-conditions equations can be solved for the design variables

and a simple implementation of the above idea exists. In other cases the optimality-

conditions equations, viewed as an equation for the design variables keeping the state and

costate �xed, may be singular and a more involved implementation is required. This is the

case for the problem considered here. In such cases it is necessary to solve for the design

variables together with the state and costate variables in a small neighborhood of the airfoil

boundary, as shown by Iollo, Kuruvila & Ta'asan [10]. The resulting algorithm is as follows:
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1. start with a tentative set of an and bn;

2. march the Euler equations, in time, a few steps on the entire �eld;

3. march the adjoint equations, in time, a few steps on the entire �eld;

4. solve in a small neighborhood of the airfoil boundary � the Euler equations and satisfy

the boundary conditions, likewise do the same with the adjoint equations [10]; then

compute the gradient of the functional;

5. if the gradient is null, restart from step 2, repeating steps 3 to 5 until the state and

costate equations are converged on the entire �eld. Otherwise update an and bn with

�an and �bn as in eqs. 26 and 27, go to 4.

When this algorithm is used in conjunction with the inverse Theodorsen transform, con-

vergence is obtained while increasing the number of coe�cients used. Usually we started

with N = 2 and increased N to the point where there is no appreciable decrease in the

functional, usually for N = 6. All of the results presented in the next section are obtained

by means of the pseudo-timemethod. The gradient is considered zero when it has decreased

two orders of magnitude, while the functional E decreases di�erently according to the case

considered. The computational cost of each optimization was about 5 times the cost of a

single analysis of the 
ow �eld.
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Figure 9: Pressure versus chord fraction for RAE2822 airfoil and optimal airfoil at M1 =

0:75. The unperturbed 
ow static pressure is taken as reference.

6 Results and Discussion

The analysis code was validated against known test cases. In particular we considered

those contained in AGARD [1]. For example, we show the results for test case 02: a NACA

0012 at 1 degree of incidence and M1 = 0:85. The grid used had 240 tangential and 60

radial points. The lift coe�cient reported for this test case varies from 0.330 to 0.3889, the

one that we �nd is 0.334. The drag coe�cients reported range from 0.0464 to 0.0590; we

have 0.0568. The iso-Mach lines of �g. 4 compare well with the benchmark of �g. 6.19 in

AGARD [1].

In order to design an airfoil of some interest, it is necessary that it has some desirable

aerodynamic characteristics, such as minimum drag, high lift, or given pitching moment.

In addition some structural constraints, for example on the volume or on the trailing edge

angle, must be satis�ed. In principle, it would be possible to minimize wave drag for given
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Figure 10: Pressure versus chord fraction for RAE2822 airfoil and optimal airfoil at M1 =

0:80. The unperturbed 
ow static pressure is taken as reference.

lift using the optimization strategy that we have developed. The functional to be minimized

would be a blend of drag and a quadratic penalty function for lift.

We have preferred another approach that has the advantage of controlling the target

pressure distribution produced on the airfoil. In fact, pressure distribution characteristics

are important for boundary layer development and transition predictions, therefore the

designer needs to control directly the pressure distribution over the airfoil. Furthermore,

once pressure distribution is �xed, lift, drag, and pitching moment are loosely dependent

on the actual geometry of the airfoil, such that if we de�ne some parameters that control

the distribution of pressure on the airfoil and we optimize such distribution for the desired

aerodynamic characteristics, we have an a priori knowledge of the pressure target.

Van Dam, van Egmond & Sloo� [26], for example, propose that the velocity distribution

over the upper and lower surface be divided in three regions: stagnation, followed by a rapid
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Figure 11: Pressure versus chord fraction for RAE2822 airfoil and optimal airfoil at M1 =

0:85. The unperturbed 
ow static pressure is taken as reference.

acceleration; a region of slightly varying velocity that may be followed by a shock wave; and

a pressure recovery region. These regions are de�ned by a number of �xed points in the

pressure distribution, and the interpolation rules between these points take into account

boundary layer development and separation requirements.

In this work we have limited ourself to selecting as target pressure distributions of well

studied airfoils, such as a Korn airfoil, the RAE 2822, and the NACA 0012. In particular,

we have studied the problem of designing a family of wing sections that produce the same

surface pressure, when M1 varies. The same problem was studied for the �rst time by

Chin [6] by means of inverse design, using the full potential equations. The airfoils he

obtained had the surface pressure of a Korn pro�le at M1 = 0:75. These airfoils had a

trailing edge angle too small for practical applications, and in some cases the upper and

the lower surfaces crossed each other. The next examples show the possibility of achieving
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Figure 12: Supersonic bubble for AF-1 airfoil.

given aerodynamic requirements, with practical airfoils.

Using the same trailing edge of a NACA 0012 airfoil, we designed two airfoils at M1 =

0:75 and M1 = 0:8 respectively, which approximate in a least square sense the pressure

distribution of a Korn airfoil at M1 = 0:7. See �gs. 5-6. In �g. 7 are presented the airfoils

obtained. In �g. 8 it is shown for comparison the pressure distribution over a Korn airfoil

at M1 = 0:8.

The maximum Mach number on the airfoil Mmax, the value of the functional at the

minimum Emin, the lift coe�cient CL, and wave drag CD for each of the unperturbed 
ow

conditions are reported in the next table. The drag coe�cient was considered zero when

it was of the same order of that corresponding to numerical dissipation for subsonic test

cases, i.e. O(10�:4).
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Figure 13: RAE2822 airfoil and optimal designs atM1 = 0:75, M1 = 0:8 and M1 = 0:85.

M1 Mmax Emin CL CD

0.7 0.98 0.44 0

0.75 0.99 3:32 � 10�4 0.37 0

0.8 1.04 8:23 � 10�4 0.31 0

Note that the di�erence in lift is a measure of the �rst order moment of the di�erence

p(�) � p�.

As another example of transonic design, the pressure generated over a RAE 2822 airfoil

at M1 = 0:7 was taken to be the target distribution. The trailing edge angle was required
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to be the same as that of a NACA 0012, and three 
ight conditions were investigated:

M1 = 0:75, M1 = 0:8 and M1 = 0:85. The pressure distributions produced on the

airfoils obtained approximated to di�erent degrees the target pressure distribution. As

M1 increases, the functional E has higher values at the minimum, i.e. for lower M1 the

target and the obtained pressure distribution are closer, in a least square sense. Results

for each case, see also �gs. 9, 10, 11, 13, are shown in the next table.

M1 Mmax Emin CL CD

0.7 0.98 0.18 0

0.75 1.00 4:03 � 10�4 0.30 0

0.8 1.02 5:86 � 10�4 0.26 0

0.85 1.07 1:03 � 10�3 0.22 0

The airfoil obtained forM1 = 0:85 is shown in �g. 11, and is designated AF-1. The large

supersonic bubble generated on the pro�le is reported in �g. 12. The AF-1 airfoil has a

maximum-thickness-to-chord ratio of 6.1% and, if compared to other transonic shock-free

airfoils for M1 = 0:85, it has favorable lift characteristics. In the work of Boerstoel [4], in

fact, it is conjectured that the limit maximum-thickness-to-chord ratio for a shock-free non

lifting airfoil it is about 7%. The nature of the recompression over the above airfoil was

further investigated. The 
ow around the AF-1 airfoil was studied using a �ner mesh with

240 tangential and 60 radial points. The entropy rise across the weak shocks on upper and

lower surfaces is O(10�3). The lift coe�cient and the drag coe�cient remain unchanged

compared to the coarser-grid case.
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It might be argued that the pressure distributions which were chosen for transonic design

are rather peculiar: they show a typical plateau after an abrupt leading edge expansion

combined with aft camber to get shockless recompression and for improving lift. For

this reason, pressure distributions with other characteristics were tested, such as that of a

NACA 0012 at 1 degree of incidence and M1 = 0:65. With this distribution, we designed

at M1 = 0:8 and the results are presented in �gs. 14 and 15. We have:

M1 Mmax Emin CL CD

0.65 0.98 0.29 0

0.8 1.07 3:79 � 10�3 0.16 0

Compared to the other designs at M1 = 0:8 the approximation of the given pressure

distribution is rather poor.

From the results presented it is evident that the pressure distribution that can be approx-

imated to a higher degree is that corresponding to the RAE2822 airfoil.

7 Conclusions

We have designed transonic wing sections of required performance using the Euler equa-

tions. The wing sections designed have a given trailing edge angle and approximate, in a

least square sense, a target pressure distribution. From a practical view point, the examples

shown suggest that airfoils may be tailored for every transonic 
ight condition, taking into

account constraints on the geometry. Furthermore we have shown that it is possible to

generate pro�les that approximate arbitrary pressure distributions, in particular it is pos-
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Figure 14: Pressure versus chord fraction for NACA0012 airfoil at M1 = 0:65 1 degree of

incidence and optimal airfoil at M1 = 0:65.

sible to design pro�les approximating a pressure distribution that satis�es requirements on

pitching moment and boundary layer development.

The design was conducted by means of an optimization algorithm that uses reasonable

computational resources: one full optimization costs about 5 times the cost of one analysis.

The algorithm is based on the pseudo-time method and on the inverse Theodorsen trans-

form, that allows the minimization with an increasing number of harmonics, in a natural

and consistent way. With this approach the design of aerodynamic components using the

Navier-Stokes equations seems to be attainable.
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Figure 15: NACA0012 airfoil and optimal design at M1 = 0:8.
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